Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(2): e17149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342970

RESUMEN

Piñon-juniper (PJ) woodlands are a dominant community type across the Intermountain West, comprising over a million acres and experiencing critical effects from increasing wildfire. Large PJ mortality and regeneration failure after catastrophic wildfire have elevated concerns about the long-term viability of PJ woodlands. Thinning is increasingly used to safeguard forests from fire and in an attempt to increase climate resilience. We have only a limited understanding of how fire and thinning will affect the structure and function of PJ ecosystems. Here, we examined vegetation structure, microclimate conditions, and PJ regeneration dynamics following ~20 years post-fire and thinning treatments. We found that burned areas had undergone a state shift that did not show signs of returning to their previous state. This shift was characterized by (1) distinct plant community composition dominated by grasses; (2) a lack of PJ recruitment; (3) a decrease in the sizes of interspaces in between plants; (4) lower abundance of late successional biological soil crusts; (5) lower mean and minimum daily soil moisture values; (6) lower minimum daily vapor pressure deficit; and (7) higher photosynthetically active radiation. Thinning created distinct plant communities and served as an intermediate between intact and burned communities. More intensive thinning decreased PJ recruitment and late successional biocrust cover. Our results indicate that fire has the potential to create drier and more stressful microsite conditions, and that, in the absence of active management following fire, there may be shifts to persistent ecological states dominated by grasses. Additionally, more intensive thinning had a larger impact on community structure and recruitment than less intensive thinning, suggesting that careful consideration of goals could help avoid unintended consequences. While our results indicate the vulnerability of PJ ecosystems to fire, they also highlight management actions that could be adapted to create conditions that promote PJ re-establishment.


Asunto(s)
Incendios , Juniperus , Pinus , Ecosistema , Bosques , Suelo
2.
New Phytol ; 236(1): 15-20, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35706381

RESUMEN

Drylands, which cover > 40% of Earth's terrestrial surface, are dominant drivers of global biogeochemical cycling and home to more than one third of the global human population. Climate projections predict warming, drought frequency and severity, and evaporative demand will increase in drylands at faster rates than global means. As a consequence of extreme temperatures and high biological dependency on limited water availability, drylands are predicted to be exceptionally sensitive to climate change and, indeed, significant climate impacts are already being observed. However, our understanding and ability to forecast climate change effects on dryland biogeochemistry and ecosystem functions lag behind many mesic systems. To improve our capacity to forecast ecosystem change, we propose focusing on the controls and consequences of two key characteristics affecting dryland biogeochemistry: (1) high spatial and temporal heterogeneity in environmental conditions and (2) generalized resource scarcity. In addition to climate change, drylands are experiencing accelerating land-use change. Building our understanding of dryland biogeochemistry in both intact and disturbed systems will better equip us to address the interacting effects of climate change and landscape degradation. Responding to these challenges will require a diverse, globally distributed and interdisciplinary community of dryland experts united towards better understanding these vast and important ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Sequías , Humanos , Suelo , Agua
3.
Oecologia ; 195(2): 513-524, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415421

RESUMEN

Anthropogenic nitrogen (N) deposition is significantly altering both community structure and ecosystem processes in terrestrial ecosystems across the globe. However, our understanding of the consequences of N deposition in dryland systems remains relatively poor, despite evidence that drylands may be particularly vulnerable to increasing N inputs. In this study, we investigated the influence of 7 years of multiple levels of simulated N deposition (0, 2, 5, and 8 kg N ha-1 year-1) on plant community structure and biological soil crust (biocrust) cover at three semi-arid grassland sites spanning a soil texture gradient. Biocrusts are a surface community of mosses, lichens, cyanobacteria, and/or algae, and have been shown to be sensitive to N inputs. We hypothesized that N additions would decrease plant diversity, increase abundance of the invasive annual grass Bromus tectorum, and decrease biocrust cover. Contrary to our expectations, we found that N additions did not affect plant diversity or B. tectorum abundance. In partial support of our hypotheses, N additions negatively affected biocrust cover in some years, perhaps driven in part by inter-annual differences in precipitation. Soil inorganic N concentrations showed rapid but ephemeral responses to N additions and plant foliar N concentrations showed no response, indicating that the magnitude of plant and biocrust responses to N fertilization may be buffered by endogenous N cycling. More work is needed to determine N critical load thresholds for plant community and biocrust dynamics in semi-arid systems and the factors that determine the fate of N inputs.


Asunto(s)
Briófitas , Ecosistema , Colorado , Nitrógeno , Suelo
4.
Proc Biol Sci ; 286(1894): 20182504, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963857

RESUMEN

Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (N2O), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps. Here, we demonstrate that refuse piles created by LCA species Atta colombica in tropical rainforests of Costa Rica provide ideal conditions for extremely high rates of N2O production (high microbial biomass, potential denitrification enzyme activity, N content and anoxia) and may represent an unappreciated source of heterogeneity in tropical forest N2O emissions. Average instantaneous refuse pile N2O fluxes surpassed background emissions by more than three orders of magnitude (in some cases exceeding 80 000 µg N2O-N m-2 h-1) and generating fluxes comparable to or greater than those produced by engineered systems such as wastewater treatment tanks. Refuse-concentrating Atta species are ubiquitous in tropical forests, pastures and production ecosystems, and increase density strongly in response to disturbance. As such, LCA colonies may represent an unrecognized greenhouse gas point source throughout the Neotropics.


Asunto(s)
Hormigas/fisiología , Óxido Nitroso/análisis , Bosque Lluvioso , Suelo/química , Animales , Costa Rica , Conducta Alimentaria
5.
Nat Microbiol ; 3(9): 977-982, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143799

RESUMEN

Translating the ever-increasing wealth of information on microbiomes (environment, host or built environment) to advance our understanding of system-level processes is proving to be an exceptional research challenge. One reason for this challenge is that relationships between characteristics of microbiomes and the system-level processes that they influence are often evaluated in the absence of a robust conceptual framework and reported without elucidating the underlying causal mechanisms. The reliance on correlative approaches limits the potential to expand the inference of a single relationship to additional systems and advance the field. We propose that research focused on how microbiomes influence the systems they inhabit should work within a common framework and target known microbial processes that contribute to the system-level processes of interest. Here, we identify three distinct categories of microbiome characteristics (microbial processes, microbial community properties and microbial membership) and propose a framework to empirically link each of these categories to each other and the broader system-level processes that they affect. We posit that it is particularly important to distinguish microbial community properties that can be predicted using constituent taxa (community-aggregated traits) from those properties that cannot currently be predicted using constituent taxa (emergent properties). Existing methods in microbial ecology can be applied to more explicitly elucidate properties within each of these three categories of microbial characteristics and connect them with each other. We view this proposed framework, gleaned from a breadth of research on environmental microbiomes and ecosystem processes, as a promising pathway with the potential to advance discovery and understanding across a broad range of microbiome science.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Ecosistema , Microbiota/fisiología , Bacterias/clasificación
6.
Ecology ; 99(9): 2080-2089, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29931744

RESUMEN

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2 O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three-fold higher total mean N2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2 O emissions in heterogeneous landscapes.


Asunto(s)
Nitrógeno/análisis , Óxido Nitroso , Ecosistema , Bosque Lluvioso , Suelo/química
7.
New Phytol ; 214(4): 1506-1517, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28262951

RESUMEN

We hypothesized that dinitrogen (N2 )- and non-N2 -fixing tropical trees would have distinct phosphorus (P) acquisition strategies allowing them to exploit different P sources, reducing competition. We measured root phosphatase activity and arbuscular mycorrhizal (AM) colonization among two N2 - and two non-N2 -fixing seedlings, and grew them alone and in competition with different inorganic and organic P forms to assess potential P partitioning. We found an inverse relationship between root phosphatase activity and AM colonization in field-collected seedlings, indicative of a trade-off in P acquisition strategies. This correlated with the predominantly exploited P sources in the seedling experiment: the N2 fixer with high N2 fixation and root phosphatase activity grew best on organic P, whereas the poor N2 fixer and the two non-N2 fixers with high AM colonization grew best on inorganic P. When grown in competition, however, AM colonization, root phosphatase activity and N2 fixation increased in the N2 fixers, allowing them to outcompete the non-N2 fixers regardless of P source. Our results indicate that some tropical trees have the capacity to partition soil P, but this does not eliminate interspecific competition. Rather, enhanced P and N acquisition strategies may increase the competitive ability of N2 fixers relative to non-N2 fixers.


Asunto(s)
Fósforo/metabolismo , Bosque Lluvioso , Suelo/química , Árboles/fisiología , Costa Rica , Fabaceae/fisiología , Moraceae/fisiología , Micorrizas , Fijación del Nitrógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantones/fisiología , Especificidad de la Especie , Clima Tropical
8.
Ecol Appl ; 27(2): 662-668, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27875004

RESUMEN

Grassland ecosystems cover a large portion of Earths' surface and contain substantial amounts of soil organic carbon. Previous work has established that these soil carbon stocks are sensitive to management and land use changes: grazing, species composition, and mineral nutrient availability can lead to losses or gains of soil carbon. Because of the large annual carbon fluxes into and out of grassland systems, there has been growing interest in how changes in management might shift the net balance of these flows, stemming losses from degrading grasslands or managing systems to increase soil carbon stocks (i.e., carbon sequestration). A synthesis published in 2001 assembled data from hundreds of studies to document soil carbon responses to changes in management. Here we present a new synthesis that has integrated data from the hundreds of studies published after our previous work. These new data largely confirm our earlier conclusions: improved grazing management, fertilization, sowing legumes and improved grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates ranging from 0.105 to more than 1 Mg C·ha-1 ·yr-1 . The new data include assessment of three new management practices: fire, silvopastoralism, and reclamation, although these studies are limited in number. The main area in which the new data are contrary to our previous synthesis is in conversion from native vegetation to grassland, where we find that across the studies the average rate of soil carbon stock change is low and not significant. The data in this synthesis confirm that improving grassland management practices and conversion from cropland to grassland improve soil carbon stocks.


Asunto(s)
Carbono/análisis , Conservación de los Recursos Naturales , Pradera , Suelo/química
9.
Ecol Appl ; 26(8): 2449-2462, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27874999

RESUMEN

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.


Asunto(s)
Nitrógeno , Hojas de la Planta , Costa Rica , Bosques , Árboles , Clima Tropical
10.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26371074

RESUMEN

A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009-13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.


Asunto(s)
Ecosistema , Consorcios Microbianos/fisiología , Archaea/metabolismo , Bacterias/metabolismo , Hongos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...